

    
      
          
            
  
Heron : The Waveform Emulator

Heron is a Python package for producing surrogate models for computationally intensive functions, such as numerical relativity
waveforms.

This version of heron is implemented slightly differently to older versions, and should allow for a greater degree of flexibility for using different GP libraries for the modelling, and to fit into analysis pipelines better than the earlier development versions.


Warning

This documentation is still being written, and you may find a few places either where documentation is missing, or where the formatting isn’t good.
If you spot something which has clearly been missed in the documentation please open an issue on the git repository.
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Pre-supplied Models

This package contains a number of different pre-baked waveform models, and the data which is required to reproduce them.
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Heron

[image: _images/heron-model.svg]
 [https://badge.fury.io/py/heron-model][image: _images/heron.svg]
 [https://travis-ci.org/transientlunatic/heron][image: _images/51749075.svg]
 [https://zenodo.org/badge/latestdoi/51749075][image: Documentation Status]
 [https://heron-model.readthedocs.io/en/latest/?badge=latest]The heron package is a python library for using Gaussian Process Regression (GPR) to emulate functions which are expensive to

It was originally built for producing a surrogate model for numerical
relativity waveforms from binary black hole coalesences, but the code
should be sufficiently general to allow other surrogate models to be
built.

In order to handle very large models, heron can use the george [http://dan.iel.fm/george/]
python package to generate the underlying Gaussian Process, which can
handle very large models thanks to its use of a hierarchical matrix
inverter.


Features


	Single-valued function surrogate production from multivalued inputs


	Handling very large datasets.










          

      

      

    

  

    
      
          
            
  
Installation


Stable release

To install the latest stable release of Heron you can use pip:

$ pip install heron





This should always install the latest stable release of heron, though it may still be sensible to run this command inside a virtual environment.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.




Source installation

Alternatively, if you want to make your own changes to the code, or test code between releases you can install from source.
The Heron source can be downloads from the Github repo [https://github.com/transientlunatic/heron].

You can either clone the public repository:

$ git clone git://github.com/transientlunatic/heron





Or download the tarball [https://github.com/transientlunatic/heron/tarball/master]:

$ curl  -OL https://github.com/transientlunatic/heron/tarball/master





Once you have a copy of the source, you can install it with:

$ pip install .











          

      

      

    

  

    
      
          
            
  
Usage

In order to run one of Heron’s built-in models you’ll need to import that model as well as Heron itself, for example:

import heron
from heron.models.georgebased import HeronHodlr

import numpy as np





We also imported numpy for convenience.

This will load latest version of the NR-trained 7-dimensional Heron model.
We now need to set the generator up to produce waveforms.
Currently we need to tell the model the total mass of the system, but this

generator = HeronHodlr()





Two different types of waveform can be requested from the model: the mean waveform (and its variance), or individual waveform samples.

In order to produce a mean waveform we need to provide the model with the instrinsic properties of the system, that is, the mass ratio, and the spin parameters. If any parameters are omitted from the dictionary they’re set to zero.

waveform = generator.mean(times=np.linspace(-0.02, 0.02), p={"mass ratio": 0.3})





The output of the mean method is two waveforms (one each for the plus and cross polarisations).

The data attribute of each waveform contains the mean strain data, while the variance attribute contains the variance on this mean waveform.

Alternatively, Heron can return individual function draws. These may not look especially similar to what you would expect out of a normal waveform model, but used collectively they can allow the calculation of various statistics.

samples = generator.distribution(samples=100, times=np.linspace(-0.02, 0.02), p={"mass ratio": 3})





This produces 100 waveform samples drawn from the model, at the same model configuration as the previous mean waveform.
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Introduction to Gaussian processes

Consider a regression problem with a set of data


\[ \begin{align}\begin{aligned}\set{D} = \setbuilder{(\vec{x}_i, y_i), i \in 1, \dots, n}\\which is composed of :math:`n` pairs of inputs, :math:`\vec{x}_i`,\end{aligned}\end{align} \]

which are vectors which describe the location of the datum in parameter
space, which are the inputs for the problem, and \(y_i\), the
outputs. The outputs may be noisy; in this work I will only consider
situations where the noise is additive and Gaussian, so

where \(\sigma\) is the standard deviation of the noise, and
\(f\) is the (latent) generating function of the data.

This regression problem can be addressed using Gaussian processes:

A gls:gaussian-process is a collection of random variables, any finite
number of which have a joint Gaussian distribution cite:gpr.book.rw.


Where it is more conventional to consider a prior over a set of, for
example, real values, such as a normal distribution, the Gaussian
process forms a prior over the functions, \(f\) from equation
ref:eq:gp:additive-noise, which might form the regression fit to any
observed data. This assumes that the values of the function \(f\)
behave as

where \(\mat{K}\) is the covariance matrix of \(\vec{x_1}\) and
\(\vec{x_2}\), which can be calculated with reference to some
covariance function, \(k\), such that
\(K_{ij} = k(\vec{x}_i, \vec{x}_j)\). Note that I have assumed that
the abbr:gp is a zero-mean process; this assumption is frequent within
the literature. While this prior is initially untrained it still
contains information about our preconceptions of the data through the
form of the covariance function. For example, whether or not we expect
the fit to be smooth, or periodic. Covariance functions will be
discussed in greater detail in section ref:sec:gp:covariance.

By providing training data we can use Bayes theorem to update the
Gaussian process, in the same way that the posterior distribution is
updated by the addition of new data in a standard Bayesian context, and
a posterior on the set of all possible functions to fit the data is
produced. Thus, for a vector of test values of the generating function
\(\vec{f}_\star\), the joint posterior
\(p(\vec{f}, \vec{f}_* | \vec{y})\), given the observed outputs
\(\vec{y}\) can be found by updating the abbr:gp prior on the
training and test function values \(p(\vec{f}, \vec{f}_*)\) with the
likelihood \(p(\vec{y}|\vec{f})\):

Finally the (latent) training-set function values, \(\vec{f}\) can
be marginalised out:

We can take the mean of this posterior in the place of the ``best fit
line’’ which other techniques produce, and then use the variance to
produce an estimate of the uncertainty of the prediction.

Both the prior \(p(\vec{f}, \vec{f}_*)\) and the likelihood
\(p(\vec{y}|\vec{f})\) are Gaussian:

with

and \(\mat{I}\) the identity matrix.

This leaves the form of the marginalised posterior being analytical:

Figures ref:fig:gp:training-data to ref:fig:gp:posterior-best show
visually how a one-dimensional regressor can be created using an abbr:gp
method, starting from a abbr:gp prior and (noisy) data.

The mean and variance of this posterior distribution can be used to form
a regressor for the data, \(\set{D}\), with the mean taking the role
of a ``line-of-best-fit’’ in conventional regression techniques, while
the variance describes the goodness of that fit.

A graphical model of a abbr:gp is shown in figure
ref:fig:gp:chain-diagram which illustrates an important property of the
abpl:gp model: the addition (or removal) of any input point to the
abbr:gp does not change the distribution of the other variables. This
property allows outputs to be generated at arbitrary locations
throughout the parameter space.

Gaussian processes trained with \(N\) training data require the
ability to both store and invert an \(N\times N\) matrix of
covariances between observations; this can be a considerable
computational challenge.

Gaussian processes can be extended from the case of a single-dimensional
input predicting a single-dimensional output to the ability to predict a
multi-dimensional output from a multi-dimensional input
cite:2011arXiv1106.6251A,Alvarez2011a,Bonilla2007.




Covariance Functions

The covariance function defines the similarity of a pair of data points,
according to some relationship with suitable properties. The similarity
of input data is assumed to be related to the similarity of the output,
and therefore the more similar two inputs are the more likely their
outputs are to be similar.

As such, the form of the covariance function represents prior knowledge
about the data, and can encode understanding of effects such as
periodicity within the data.

A stationary covariance function is a function
\(f(\vec{x} - \vec{x}')\), and which is thus invariant to
translations in the input space.


If a covariance function is a function of the form
\(f(|\vec{x} - \vec{x}'|)\) then it is isotropic, and invariant
under all rigid motions.


A covariance function which is both stationary and isotropic has the
property that it can be expressed as a function of a single variable,
\(r = | \vec{x} - \vec{x}' |\) is known as a abbr:rbf. Functions of
the form \(k : (\vec{x}, \vec{x}') \to \mathbb{C}\), for two vectors
\(\vec{x}, \vec{x}' \in \mathcal{X}\) are often known as kernels,
and I will frequently refer interchangably to covariance functions and
kernels where the covariance function has this form.

For a set of points \(\setbuilder{ \vec{x}_{i} | i = 1, \dots, n }\)
a kernel, \(k\) can be used to construct the gram matrix,
\(K_{i,j} = k(x_{i}, x_{j})\). If the kernel is also a covariance
function then \(K\) is known as a covariance matrix.

For a kernel to be a valid covariance function for a abbr:gp it must
produce a positive semidefinite covariance matrix \(\mat{K}\). Such
a matrix, \(\mat{K} \in \mathbb{R}^{n \times n}\) must satisfy
\(\vec{x}^{\transpose} \mat{K} \vec{x} \geq 0\) for all
\(\vec{x} \in \mathbb{R}^{n}\).


Example covariance functions

One of the most frequently encountered covariance functions in the
literature is the abbr:se covariance functions cite:gpr.book.rw. Perhaps
as a result of its near-ubiquity this kernel is known under a number of
similar, but confusing names (which are often inaccurate). These include
the exponential quadratic, quadratic exponential, squared
exponential, and even Gaussian covariance function.

The reason for this is its form, which closely resembles that of the
Gaussian function:

for \(r\) the Euclidean distance of a datum from the centre of the
parameter space, and \(l\) is a scale factor associated with the
axis along which the data are defined.

The squared exponential function imposes strong smoothness constraints
on the model, as it is infinitely differentiable.

The scale factor, \(l\) in ref:eq:gp:kernels:se, also known as its
scale-length defines the size of the effect within the process. This
characteristic length-scale can be understood cite:adler1976,gpr.book.rw
in terms of the number of times the abbr:gp should cross some given
level (for example, zero). Indeed, for a abbr:gp with a covariance
function \(k\) which has well-defined first and second derivatives
the expected number of times, \(N_{u}\) the process will cross a
value \(u\) is

A zero-mean abbr:gp which has an abbr:se covariance structure will then
cross zero \(1/(2 \pi l)\) times on average.

Examples of the squared exponential covariance function, and of draws
from a Gaussian process prior which uses this covariance function are
plotted in figure ref:fig:gp:covariance:overviews:se for a variety of
different scale lengths.

For data which is not generated by a smooth function a suitable
covariance function may be the exponential covariance function,
\(k_{\mathrm{EX}}\), which is defined

where \(r\) is the pairwise distance between data and \(l\) is a
length scale, as in equation ref:eq:gp:kernels:se.

Examples of the exponential covariance function, and of draws from a
Gaussian process prior which uses this covariance function are plotted
in figure ref:fig:gp:covariance:overviews:ex for a variety of different
scale lengths.

For data generated by functions which are smooth, but not necessarily
infinitely differentiable we may turn to the Matérn family of covariance
functions, which take the form

for \(K_{\nu}\) the modified Bessel function of the second kind, and
\(\Gamma\) the gamma function. As with the previous two covariance
functions \(l\) is a scale length parameter, and \(r\) the
distance between two data. A abbr:gp which has a Matérn covariance
function will be \((\lceil x \rceil - 1)\)-times differentiable.

While determining an appropriate value of \(\nu\) during the
training of the abbr:gp is possible, it is common to select a value a
priori for this quantity. \(\nu=3/2\) and \(\nu=5/2\) are
common choices as \(K_{\nu}\) can be determined simply, and the
covariance functions are analytic.

The case with \(\nu=3/2\), commonly referred to as a
Matérn-\(3/2\) kernel then becomes

Examples of this covariance function, and example draws from a abbr:gp
using it as a covariance function are plotted in figure
ref:fig:gp:kernels:m32.

Similarly, the Matérn-\(5/2\) is the case where \(\nu = 5/2\),
taking the form

Again, examples of this covariance function, and example draws from a
abbr:gp using it as a covariance function are plotted in figure
ref:fig:gp:kernels:m52.

Data may also be generated from functions with variation on multiple
scales. One approach to modelling such data is to use a abbr:gp with
rational quadratic covariance. This covariance function represents a
scale mixture of abbr:rbf covariance functions, each with a different
characteristic length scale. The rational quadratic covariance function
is defined as

where \(\alpha\) is a parameter which controls the weighting of
small-scale compared to large-scale variations, and \(l\) and
\(r\) are the overall length scale of the covariance and the
distance between two data respectively. Examples of this function, at a
variety of different length scales and \(\alpha\) values, and draws
from abpl:gp which use these functions are plotted in figure
ref:fig:gp:kernels:rq.

This summary of potential covariance functions for use with a abbr:gp is
far from complete (see cite:gpr.book.rw for a more detailed list).
However, these four can be used or combined to produce highly flexible
regression models, as they can be added and multiplied as normal
functions.







          

      

      

    

  

    
      
          
            
  
George-based models

A number of models implemented in Heron make use of the George Gaussian process library which implements a number of simplifications to make the inversion of the covariance matrix required for GPR predictions more tractable.

The main model produced this way is HeronHODLR, which implements a fully-spinning BBH waveform model which is trained on waveform data from the Georgia Tech waveform catalogue.

All of the george-based models are contained in the heron.models.georgebased module.


HeronHODLR: A spinning, NR-trained waveform model

Ther HeronHODLR model implements a surrogate model for gravitational waveforms form binary black hole events with arbitrary spin parameters between a mass ratio of 1 and 8.


	
class heron.models.georgebased.HeronHodlr

	Produce a BBH waveform generator using the Hodlr method.

Methods







	bilby(self, time, mass_1, mass_2, …)

	Return a waveform from the GPR in a format expected by the Bilby ecosystem



	build(self[, mean, white_noise, tol])

	Construct the GP object



	distribution(self, p, times[, samples, …])

	Return the mean waveform and the variance at a given location in the  BBH parameter space.



	eval(self)

	Prepare the model to be evaluated.



	log_evidence(self, k, n)

	Evaluate the log-evidence of the model at a hyperparameter location k.



	mean(self, p, times)

	Return the mean waveform at a given location in the  BBH parameter space.



	train(self)

	Prepare the model to be trained.













Heron2DHodlrIMR

This model is a 2D prototype waveform model trained on phenomenological sample waveforms.
In contrast to the full HeronHODLR model, this model models only non-spinning waveforms between mass ratios of 1 and 10.


	
class heron.models.georgebased.Heron2dHodlrIMR

	Produce a BBH waveform generator using the Hodlr method with IMRPhenomPv2 training data.

Methods







	bilby(self, time, mass_1, mass_2, …)

	Return a waveform from the GPR in a format expected by the Bilby ecosystem



	build(self[, mean, white_noise, tol])

	Construct the GP object



	distribution(self, p, times[, samples, …])

	Return the mean waveform and the variance at a given location in the  BBH parameter space.



	eval(self)

	Prepare the model to be evaluated.



	log_evidence(self, k, n)

	Evaluate the log-evidence of the model at a hyperparameter location k.



	mean(self, p, times)

	Return the mean waveform at a given location in the  BBH parameter space.



	train(self)

	Prepare the model to be trained.
















          

      

      

    

  

    
      
          
            
  
Implementing new models

All models implemented in the heron package are built on top of the Model class, which provides a number of useful methods to assist in creating a Gaussian process model.


	
class heron.models.Model

	This is the factory class for statistical models used for waveform generation.

A model class must expose the followi*** TODO Email about Away Dayc_ind = {j:i for i,j in columns.items()}c_ind = {j:i for i,j in columns.items()}ng methods:
- distribution : produce a distribution of waveforms at a given point in the parameter space
- mean : produce a mean waveform at a given point in the parameter space
- train : provide an interface for training the model





All of the methods which are provided by this class are intended to be treated as private methods, which other classes build upon, and which aren’t intended to be accessed directly.

To build a new model we can begin by inheriting the Model class.

class NewModel(Model):
   pass





This will give your new model access to the various methods which are needed to produce waveform outputs from a model.

As a minimum your new model must contain three methods so that heron can interact with it properly.


distribution()

This method should return the parameters of the waveform distribution at a given location in parameter space, i.e. a vector representing the mean and variance at each requested location.
The function should have the following signature

distribution(self, p, times, *args, **kwargs)





With p being a dictionary of coordinates in the parameter space, and times being a list or array of times at which the waveform distribution should be produced.




mean()

This method should return only the mean waveform at a given location in the parameter space.
It should have the signature

mean(p, times, *args, **kwargs)





Where p is a dictionary of coordinates in the parameter space, and times is a list or array of times at which the waveform distribution should be produed.




train()

This method defines the correct way to “train” the model, in order to determine the optimal values of the hyperparameters for the model (using an empirical Bayesian approach).
This method should, at the minimum, set self.training to True for the model, and self.evaluate to False, in order to mark the model as being in a training state, and not suitable for evaluation.

If this method conducts the entire training process you may then switch these flags to set self.evaluate to True and self.training to False before the method completes its execution.
Alternatively you should define an eval() method to do this, and any other cleaning-up which should be done after training.
If heron encounters a model in training state when attempting to evaluate it, it will first attempt to run the eval() method on the model.

In addition to the Model class, a number of additional helper classes exist within heron, mainly to help with the construction of gravitational wave models.




Gravitational wave-specific classes

The heron.models.gw.BBHSurrogate should be inherited in a class if it is designed to emulate binary black hole waveforms.
This class provides metadata related to the intrinsic parameters of these systems.
For simpler models which don’t include spin effects you should use the heron.models.gw.BBHNonSpinSurrogate class instead.

For time-domain strain models you should have your model class inherit the heron.models.gw.HofTSurrogate class.
This provides interfaces to the waveform model which are particular to a time-domain model.
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      	Normal (class in heron.priors)


      	normalise() (heron.data.Data method)


  





O


  	
      	order (heron.kernels.Matern attribute)


  





P


  	
      	parameters (heron.models.gw.BBHSurrogate attribute)


      	prediction() (heron.regression.MultiTaskGP method)

      
        	(heron.regression.SingleTaskGP method)


      


  

  	
      	Prior (class in heron.priors)


      	prior_transform() (in module heron.training)


      	problem_dims (heron.models.gw.BBHNonSpinSurrogate attribute)

      
        	(heron.models.gw.BBHSurrogate attribute)


      


  





R


  	
      	Regressor (class in heron.regression)


      	rmse() (heron.regression.SingleTaskGP method)


      	run_nested() (in module heron.training)


  

  	
      	run_sampler() (in module heron.training)


      	run_training_map() (in module heron.training)


      	run_training_mcmc() (in module heron.training)


      	run_training_nested() (in module heron.training)


  





S


  	
      	save() (heron.regression.SingleTaskGP method)


      	set_bmatrix() (heron.regression.SingleTaskGP method)


      	set_hyperparameters() (heron.kernels.Kernel method)

      
        	(heron.kernels.SquaredExponential method)


        	(heron.regression.MultiTaskGP method)


        	(heron.regression.SingleTaskGP method)


      


  

  	
      	SingleTaskGP (class in heron.regression)


      	SquaredExponential (class in heron.kernels)


  





T


  	
      	test_predict() (heron.regression.SingleTaskGP method)


      	Timeseries (class in heron.data)


      	train() (heron.models.georgebased.HodlrGPR method)

      
        	(heron.regression.MultiTaskGP method)


        	(heron.regression.SingleTaskGP method)


        	(in module heron.models.georgebased)


      


  

  	
      	train_cv() (in module heron.training)


      	transform() (heron.priors.Normal method)


  





U


  	
      	UndefinedParameters


      	UnsupportedError


  

  	
      	update() (heron.regression.MultiTaskGP method)

      
        	(heron.regression.SingleTaskGP method)
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Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://git.ligo.org/daniel-williams/heron/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitLab issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.




Implement Features

Look through the GitLab issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.




Write Documentation

heron could always use more documentation, whether as part of the
official heron docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/transientlunatic/heron/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)









Get Started!

Ready to contribute? Here’s how to set up heron for local development.


	Fork the heron repo on GitLab.


	Clone your fork locally:

$ git clone git@git.ligo.org:your_name_here/heron.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv heron
$ cd heron/
$ pip install -r requirements.txt
$ pip install -r requirements_dev.txt
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 heron tests
$ python setup.py test
$ tox





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitLab:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.










          

      

      

    

  

    
      
          
            
  
History


0.1.0 (2016-1-22)


	First release on PyPI.
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heron.models package


Submodules




heron.models.georgebased module

Models utilising the george GPR library in Python and C++.


	
class heron.models.georgebased.Heron2dHodlr

	Bases: heron.models.georgebased.HodlrGPR, heron.models.gw.BBHNonSpinSurrogate, heron.models.gw.HofTSurrogate

Produce a BBH waveform generator using the Hodlr method.

Methods







	bilby(self, time, mass_1, mass_2, …)

	Return a waveform from the GPR in a format expected by the Bilby ecosystem



	build(self[, mean, white_noise, tol])

	Construct the GP object



	distribution(self, p, times[, samples, …])

	Return the mean waveform and the variance at a given location in the  BBH parameter space.



	eval(self)

	Prepare the model to be evaluated.



	log_evidence(self, k, n)

	Evaluate the log-evidence of the model at a hyperparameter location k.



	mean(self, p, times)

	Return the mean waveform at a given location in the  BBH parameter space.



	train(self)

	Prepare the model to be trained.











	
class heron.models.georgebased.Heron2dHodlrIMR

	Bases: heron.models.georgebased.HodlrGPR, heron.models.gw.BBHNonSpinSurrogate, heron.models.gw.HofTSurrogate

Produce a BBH waveform generator using the Hodlr method with IMRPhenomPv2 training data.

Methods







	bilby(self, time, mass_1, mass_2, …)

	Return a waveform from the GPR in a format expected by the Bilby ecosystem



	build(self[, mean, white_noise, tol])

	Construct the GP object



	distribution(self, p, times[, samples, …])

	Return the mean waveform and the variance at a given location in the  BBH parameter space.



	eval(self)

	Prepare the model to be evaluated.



	log_evidence(self, k, n)

	Evaluate the log-evidence of the model at a hyperparameter location k.



	mean(self, p, times)

	Return the mean waveform at a given location in the  BBH parameter space.



	train(self)

	Prepare the model to be trained.











	
class heron.models.georgebased.HeronHodlr

	Bases: heron.models.georgebased.HodlrGPR, heron.models.gw.BBHSurrogate, heron.models.gw.HofTSurrogate

Produce a BBH waveform generator using the Hodlr method.

Methods







	bilby(self, time, mass_1, mass_2, …)

	Return a waveform from the GPR in a format expected by the Bilby ecosystem



	build(self[, mean, white_noise, tol])

	Construct the GP object



	distribution(self, p, times[, samples, …])

	Return the mean waveform and the variance at a given location in the  BBH parameter space.



	eval(self)

	Prepare the model to be evaluated.



	log_evidence(self, k, n)

	Evaluate the log-evidence of the model at a hyperparameter location k.



	mean(self, p, times)

	Return the mean waveform at a given location in the  BBH parameter space.



	train(self)

	Prepare the model to be trained.











	
class heron.models.georgebased.HodlrGPR

	Bases: heron.models.Model

A GPR model using the hierarchical matrix approximation.

Methods







	build(self[, mean, white_noise, tol])

	Construct the GP object



	distribution(self, p, times[, samples, …])

	Return the mean waveform and the variance at a given location in the  BBH parameter space.



	eval(self)

	Prepare the model to be evaluated.



	log_evidence(self, k, n)

	Evaluate the log-evidence of the model at a hyperparameter location k.



	mean(self, p, times)

	Return the mean waveform at a given location in the  BBH parameter space.



	train(self)

	Prepare the model to be trained.







	
build(self, mean=0.0, white_noise=0, tol=1e-06)

	Construct the GP object






	
distribution(self, p, times, samples=100, polarisation='h+')

	Return the mean waveform and the variance at a given location in the 
BBH parameter space.


	Parameters

	
	pdict

	A dictionary of parameter locations.



	timesarray-like

	The timestamps at which the model should be evaluated.



	samplesint

	The number of samples to draw from the GP.



	polarisationstr {“h+”, “hx”}

	The polarisation which should be evaluated.














	
eval(self)

	Prepare the model to be evaluated.






	
log_evidence(self, k, n)

	Evaluate the log-evidence of the model at a hyperparameter location k.


	Parameters

	
	nint

	The number of points to be used to calculate the log likelihood.














	
mean(self, p, times)

	Return the mean waveform at a given location in the 
BBH parameter space.






	
train(self)

	Prepare the model to be trained.










	
heron.models.georgebased.train(model, batch_size=100, algorithm='adam', max_iter=1000)

	Train a george-based Gaussian process model.








heron.models.gw module

This module contains objects which provide the specifically-GW parts of waveform surrogate models.


	
class heron.models.gw.BBHNonSpinSurrogate

	Bases: object


	
c_ind = {'h+': 8, 'hx': 9, 'mass ratio': 1, 'time': 0}

	




	
columns = {0: 'time', 1: 'mass ratio', 8: 'h+', 9: 'hx'}

	




	
problem_dims = 2

	








	
class heron.models.gw.BBHSurrogate

	Bases: object


	
c_ind = {'h+': 8, 'hx': 9, 'mass ratio': 1, 'spin 1x': 2, 'spin 1y': 3, 'spin 1z': 4, 'spin 2x': 5, 'spin 2y': 6, 'spin 2z': 7, 'time': 0}

	




	
columns = {0: 'time', 1: 'mass ratio', 2: 'spin 1x', 3: 'spin 1y', 4: 'spin 1z', 5: 'spin 2x', 6: 'spin 2y', 7: 'spin 2z', 8: 'h+', 9: 'hx'}

	




	
parameters = ('mass ratio', 'spin 1x', 'spin 1y', 'spin 1z', 'spin 2x', 'spin 2y', 'spin 2z')

	




	
problem_dims = 8

	








	
class heron.models.gw.HofTSurrogate

	Bases: object

Methods







	bilby(self, time, mass_1, mass_2, …)

	Return a waveform from the GPR in a format expected by the Bilby ecosystem







	
bilby(self, time, mass_1, mass_2, luminosity_distance)

	Return a waveform from the GPR in a format expected by the Bilby ecosystem












Module contents


	
class heron.models.Model

	Bases: object

This is the factory class for statistical models used for waveform generation.

A model class must expose the followi*** TODO Email about Away Dayc_ind = {j:i for i,j in columns.items()}c_ind = {j:i for i,j in columns.items()}ng methods:
- distribution : produce a distribution of waveforms at a given point in the parameter space
- mean : produce a mean waveform at a given point in the parameter space
- train : provide an interface for training the model











          

      

      

    

  

    
      
          
            
  
heron.regression

Functions and classes for contructing regression surrogate models.

Functions







	clear_output

	



	cross_validation(p, gp)

	Calculate the cross-validation factor between the training set and the test set.



	ln_likelihood(p, gp)

	Returns to log-likelihood of the Gaussian process,  which can be used to learn the hyperparameters of the GP.



	load(filename)

	Load a pickled heron Gaussian Process.



	logp(x)

	



	minimize(fun, x0[, args, method, jac, hess, …])

	Minimization of scalar function of one or more variables.



	prior_transform(x)

	



	run_nested(gp[, metric])

	



	run_sampler(sampler, initial, iterations)

	Run the MCMC sampler for some number of iterations,  but output a progress bar so you can keep track of what’s going on



	run_training_map(gp[, metric, repeats])

	Find the maximum a posteriori training values for the Gaussian Process.



	run_training_mcmc(gp[, walkers, burn, …])

	Train a Gaussian process using an MCMC process to find the maximum evidence.



	run_training_nested(gp[, method, maxiter, …])

	Train the Gaussian Process model using nested sampling.



	train_cv(gp)

	






Classes







	MultiTaskGP(training_data, kernel[, tikh, …])

	An implementation of a co-trained set of Gaussian processes which share the same hyperparameters, but which model differing data.



	Regressor(training_data, kernel[, tikh, …])

	
	Attributes

	








	SingleTaskGP(training_data, kernel[, tikh, …])

	This is an implementaion of a Single task Gaussian process  regressor.



	partial

	partial(func, *args, **keywords) - new function with partial application of the given arguments and keywords.










          

      

      

    

  

    
      
          
            
  
heron.scripts package


Submodules




heron.scripts.bbh module




Module contents







          

      

      

    

  

    
      
          
            
  
heron.training

These are functions designed to be used for training a Gaussian
process made using heron.

Functions







	cross_validation(p, gp)

	Calculate the cross-validation factor between the training set and the test set.



	ln_likelihood(p, gp)

	Returns to log-likelihood of the Gaussian process,  which can be used to learn the hyperparameters of the GP.



	logp(x)

	



	prior_transform(x)

	



	run_nested(gp[, metric])

	



	run_sampler(sampler, initial, iterations)

	Run the MCMC sampler for some number of iterations,  but output a progress bar so you can keep track of what’s going on



	run_training_map(gp[, metric, repeats])

	Find the maximum a posteriori training values for the Gaussian Process.



	run_training_mcmc(gp[, walkers, burn, …])

	Train a Gaussian process using an MCMC process to find the maximum evidence.



	run_training_nested(gp[, method, maxiter, …])

	Train the Gaussian Process model using nested sampling.



	train_cv(gp)

	










          

      

      

    

  

    
      
          
            
  
heron package


Submodules




heron.acquisition module




heron.corner module


	
heron.corner.corner(data_object, figsize=(10, 10))

	






heron.data module

The data module is designed to load and prepare arbitrary data sets
for use in machine learning algorithms.


	
class heron.data.Data(targets, labels, target_sigma=None, label_sigma=None, target_names=None, label_names=None, test_targets=None, test_labels=None, test_size=0.05)

	Bases: object

The data class is designed to hold non-timeseries data, and is
capable of automatically selecting test data from the provided 
dataset.

Future development will include the ability to add pre-selected 
test and verification data to the object.

Methods







	add_data(self, targets, labels[, …])

	Add new rows into the data object.



	calculate_normalisation(self, data, name)

	Calculate the offsets for the normalisation.



	copy(self)

	Return a copy of this data object.



	denormalise(self, data, name)

	Reverse the normalise() method’s effect on the data, and return it to the correct scaling.



	get_starting(self)

	Attempts to guess sensible starting values for the hyperparameter values.



	ix2name(self, name)

	Convert the index of a column to a column name.



	name2ix(self, name)

	Convert the name of a column to a column index.



	normalise(self, data, name)

	Normalise a given array of data so that the values of the data have a minimum at 0 and a maximum at 1.







	
add_data(self, targets, labels, target_sigma=None, label_sigma=None)

	Add new rows into the data object.


	targetsarray-like

	An array of training targets or “x” values which are
to be used to train a machine learning algorithm.



	labelsarray-like

	An array of training labels or “y” values which represent
the observations made at the target locations of the data set.



	target_sigmaarray-like

	Either an array of the uncertainty for each target point, or an 
array of the uncertainties, as a float, for each column in the targets.



	label_sigmaarray-like

	Either an array of the uncertainty for each target point, or an 
array of the uncertainties, as a float, for each column in the labels.










	
calculate_normalisation(self, data, name)

	Calculate the offsets for the normalisation. 
We’ll normally want to normalise the training data, and then be able 
to normalise and denormalise new inputs according to that.


	Parameters

	
	dataarray-like

	The array of data to use to calculate the normalisations.



	namestr

	The name to label the constants with.














	
copy(self)

	Return a copy of this data object.






	
denormalise(self, data, name)

	Reverse the normalise() method’s effect on the data, and return it
to the correct scaling.


	Parameters

	
	dataarray-like

	The normalised data



	scalearray-like

	The scale-factors used to normalise the data.







	Returns

	
	array-like

	The denormalised data














	
get_starting(self)

	Attempts to guess sensible starting values for the hyperparameter values.


	Returns

	
	hyperparametersndarray

	An array of values for the various hyperparameters.














	
ix2name(self, name)

	Convert the index of a column to a column name.






	
name2ix(self, name)

	Convert the name of a column to a column index.






	
normalise(self, data, name)

	Normalise a given array of data so that the values of the data
have a minimum at 0 and a maximum at 1. This improves the 
computability of the majority of data sets.


	Parameters

	
	dataarray-like

	The array of data to be normalised.



	namestr

	The name of the normalisation to be applied, e.g. training or label







	Returns

	
	norm_dataarray-like

	An array of normalised data.



	scale_factorsarray-like

	An array of scale factors. The first is the DC offset, while
the second is the multiplicative factor.









Notes

In order to perform the normalisation we need two steps:
1) Subtract the “DC Offset”, which is the minimum of the data
2) Divide by the range of the data










	
class heron.data.Timeseries(targets, labels, target_names=None, label_names=None, test_size=0.05)

	Bases: object

This is a class designed to hold timeseries data for machine
learning algorithms.

Timeseries data needs to be handled differently from other datasets
as it is rarely likely to be advantageous to select individual points
from a timeseries as either test data or verification data.
Instead the timeseries class will select individual timeseries as the
test and verification data.








heron.filtering module

Matched filtering functions.

░█░█░█▀▀░█▀▄░█▀█░█▀█
░█▀█░█▀▀░█▀▄░█░█░█░█
░▀░▀░▀▀▀░▀░▀░▀▀▀░▀░▀


Heron is a matched filtering framework for Python.

This code is designed for performing matched filtering using a
Gaussian Process Surrogate model.
—————————————————————


	
class heron.filtering.Filter(gp, data, times)

	Bases: object

This class builds the filtering machinery from a provided surrogate
model and noisy data.

Methods







	matched_likelihood(self, theta[, psd, srate])

	Calculate the simple match of some data, given a template, and return its log-likelihood.







	
matched_likelihood(self, theta, psd=None, srate=16834)

	Calculate the simple match of some data, given a template, and return its
log-likelihood.


	Parameters

	
	datanp.ndarray

	An array of data which is believed to contain a signal.



	thetanp.ndarray

	An array containing the location at which the template should be evaluated.


















	
heron.filtering.inner_product_noise(x, y, sigma, psd=None, srate=16834)

	Calculate the noise-weighted inner product of two random arrays.


	Parameters

	
	xnp.ndarray

	The first data array



	ynp.ndarray

	The second data array



	sigmanp.ndarray

	The uncertainty to weight the inner product by.



	psdnp.darray

	The power spectral density to weight the inner product by.


















heron.kernels module

Kernel functions for GPs.


	
class heron.kernels.ExponentialSineSq(period=1, width=15, ax=0)

	Bases: heron.kernels.Kernel

An implementation of the exponential sine-squared kernel.

Methods







	distance(self, data1, data2[, hypers])

	Calculate the squared distance to the point in parameter space.



	function(self, data1, data2, period)

	The functional form of the kernel inside the exponential.



	matrix(self, data1, data2)

	Produce a gram matrix based off this kernel.












	gradient

	


	set_hyperparameters

	






	
function(self, data1, data2, period)

	The functional form of the kernel inside the exponential.






	
gradient(self, data1, data2)

	




	
hyper = [1, 1]

	




	
matrix(self, data1, data2)

	Produce a gram matrix based off this kernel.


	Parameters

	
	datandarray

	An array of data (x)







	Returns

	
	covarndarray

	A covariance matrix.














	
name = 'Exponential sine-squared kernel'

	








	
class heron.kernels.Kernel

	Bases: object

A generic factory for Kernel classes.

Methods







	distance(self, data1, data2[, hypers])

	Calculate the squared distance to the point in parameter space.



	matrix(self, data1, data2)

	Produce a gram matrix based off this kernel.












	set_hyperparameters

	






	
distance(self, data1, data2, hypers=None)

	Calculate the squared distance to the point in parameter space.






	
matrix(self, data1, data2)

	Produce a gram matrix based off this kernel.


	Parameters

	
	datandarray

	An array of data (x)







	Returns

	
	covarndarray

	A covariance matrix.














	
name = 'Generic kernel'

	




	
ndim = 1

	




	
set_hyperparameters(self, hypers)

	








	
class heron.kernels.Matern(order=1.5, amplitude=100, width=15)

	Bases: heron.kernels.Kernel

An implementation of the Matern Kernel.

Methods







	distance(self, data1, data2[, hypers])

	Calculate the squared distance to the point in parameter space.



	matrix(self, data1, data2)

	Produce a gram matrix based off this kernel.












	function

	


	set_hyperparameters

	






	
function(self, data1, data2)

	




	
name = 'Matern'

	




	
order = 1.5

	








	
class heron.kernels.SquaredExponential(ndim=1, amplitude=100, width=15)

	Bases: heron.kernels.Kernel

An implementation of the squared-exponential kernel.


	Attributes

	
	flat_hyper

	







Methods







	distance(self, data1, data2[, hypers])

	Calculate the squared distance to the point in parameter space.



	function(self, data1, data2)

	The functional form of the kernel.



	gradient(self, data1, data2)

	Calculate the graient of the kernel.



	matrix(self, data1, data2)

	Produce a gram matrix based off this kernel.












	set_hyperparameters

	






	
flat_hyper

	




	
function(self, data1, data2)

	The functional form of the kernel.






	
gradient(self, data1, data2)

	Calculate the graient of the kernel.






	
hyper = [1.0]

	




	
name = 'Squared exponential kernel'

	




	
set_hyperparameters(self, hypers)

	










heron.priors module

Prior distributions for GP hyperpriors.


	
class heron.priors.Normal(mean, std)

	Bases: heron.priors.Prior

A normal prior probability distribution.

Methods







	transform(self, x)

	Transform from unit normalisation to this prior.












	logp

	






	
logp(self, x)

	




	
transform(self, x)

	Transform from unit normalisation to this prior.


	Parameters

	
	xfloat

	The position in the normalised hyperparameter space


















	
class heron.priors.Prior

	Bases: object

A prior probability distribution.








heron.regression module

Functions and classes for contructing regression surrogate models.


	
class heron.regression.MultiTaskGP(training_data, kernel, tikh=1e-06, solver=<class 'george.solvers.hodlr.HODLRSolver'>, hyperpriors=None)

	Bases: heron.regression.SingleTaskGP

An implementation of a co-trained set of Gaussian processes which
share the same hyperparameters, but which model differing
data. The training of these models is described in RW pp115–116.

A multi-task GPR is capable of acting as a surrogate to a many-to-many function, 
and is trained by making the assumption that all of the outputs from the function 
share a common correlation structure.

The principle difference compared to a single task GP is the
presence of multiple Gaussian Processes, with one to model each
dimension of the output data.

Notes

The MultiTask GPR implementation is very much a work in progress at the
moment, and not all methods implemented in the SingleTask GPR are implemented
correctly yet.


	Attributes

	
	km

	







Methods







	active_learn(self, afunction, x, y[, iters, …])

	Actively train the Gaussian process from a set of provided labels and targets using some acquisition function.



	add_data(self, target, label[, label_error])

	Add data to the Gaussian process.



	correlation(self)

	Calculate the correlation between the model and the test data.



	entropy(self)

	Return the entropy of the Gaussian Process distribution.



	expected_improvement(self, x)

	Returns the expected improvement at the design vector X in the model



	get_hyperparameters(self)

	Return the kernel hyperparameters.



	grad_neg_ln_likelihood(self, p)

	Return the negative of the gradient of the log likelihood for the GP when its hyperparameters have some specified value.



	hyperpriortransform(self, p)

	Return the true value in the desired hyperprior space, given an input of a unit-hypercube prior space.



	ln_likelihood(self, p)

	Provides a wrapper to the ln_likelihood functions for each component Gaussian process in the multi-task system.



	loghyperpriors(self, p)

	Calculate the log of the hyperprior distributions at a given  point.



	neg_ln_likelihood(self, p)

	Returns the negative of the log-likelihood; designed for use with minimisation algorithms.



	nei(self, x)

	Calculate the negative of the expected improvement at a point x.



	prediction(self, new_datum)

	Produce a prediction at a new point, or set of points.



	rmse(self)

	Calculate the root mean squared error of the whole model.



	save(self, filename)

	Save the Gaussian Process to a file which can be reloaded later.



	set_bmatrix(self, values)

	Set the values of the B matrix from a vector.



	set_hyperparameters(self, hypers)

	Set the hyperparameters of the kernel function on each Gaussian process.



	test_predict(self)

	Calculate the value of the GP at the test targets.



	train(self[, method, metric, sampler])

	Train the Gaussian process by finding the optimal  values for the kernel hyperparameters.



	update(self)

	Update the stored matrices.







	
get_hyperparameters(self)

	Return the kernel hyperparameters. Returns the hyperparameters of
only the first GP in the network; the others /should/ all be
the same, but there might be something to be said for checking
this.


	Returns

	
	hyperslist

	A list of the kernel hyperparameters














	
ln_likelihood(self, p)

	Provides a wrapper to the ln_likelihood functions for each
component Gaussian process in the multi-task system.

Notes

This is implemented in a separate function because of the mild 
peculiarities of how the pickle module needs to serialise 
functions, which means that instancemethods (which this would 
become) can’t be serialised.






	
prediction(self, new_datum)

	Produce a prediction at a new point, or set of points.


	Parameters

	
	new_datumarray

	The coordinates of the new point(s) at which the GPR model should be evaluated.







	Returns

	
	prediction meansarray

	The mean values of the function drawn from the Gaussian Process.



	prediction variancesarray

	The variance values for the function drawn from the GP.














	
set_hyperparameters(self, hypers)

	Set the hyperparameters of the kernel function on each Gaussian process.






	
train(self, method='MCMC', metric='loglikelihood', sampler='ensemble', **kwargs)

	Train the Gaussian process by finding the optimal 
values for the kernel hyperparameters.


	Parameters

	
	methodstr {“MCMC”, “MAP”}

	The method to be employed to calculate the hyperparameters.



	metricstr

	The metric which should be used to assess the model.



	hyperpriorslist

	The hyperprior distributions for the hyperparameters. Defaults to None, in which 
case the prior is uniform over all real numbers.














	
update(self)

	Update the stored matrices.










	
class heron.regression.Regressor(training_data, kernel, tikh=1e-06, solver=<class 'george.solvers.hodlr.HODLRSolver'>, hyperpriors=None, **kwargs)

	Bases: heron.regression.SingleTaskGP


	Attributes

	
	km

	







Methods







	active_learn(self, afunction, x, y[, iters, …])

	Actively train the Gaussian process from a set of provided labels and targets using some acquisition function.



	add_data(self, target, label[, label_error])

	Add data to the Gaussian process.



	correlation(self)

	Calculate the correlation between the model and the test data.



	entropy(self)

	Return the entropy of the Gaussian Process distribution.



	expected_improvement(self, x)

	Returns the expected improvement at the design vector X in the model



	get_hyperparameters(self)

	Return the kernel hyperparameters.



	grad_neg_ln_likelihood(self, p)

	Return the negative of the gradient of the log likelihood for the GP when its hyperparameters have some specified value.



	hyperpriortransform(self, p)

	Return the true value in the desired hyperprior space, given an input of a unit-hypercube prior space.



	ln_likelihood(self, p)

	Provides a convenient wrapper to the ln likelihood function.



	loghyperpriors(self, p)

	Calculate the log of the hyperprior distributions at a given  point.



	neg_ln_likelihood(self, p)

	Returns the negative of the log-likelihood; designed for use with minimisation algorithms.



	nei(self, x)

	Calculate the negative of the expected improvement at a point x.



	prediction(self, new_datum[, normalised])

	Produce a prediction at a new point, or set of points.



	rmse(self)

	Calculate the root mean squared error of the whole model.



	save(self, filename)

	Save the Gaussian Process to a file which can be reloaded later.



	set_bmatrix(self, values)

	Set the values of the B matrix from a vector.



	set_hyperparameters(self, hypers)

	Set the hyperparameters of the kernel function.



	test_predict(self)

	Calculate the value of the GP at the test targets.



	train(self[, method, metric, sampler])

	Train the Gaussian process by finding the optimal  values for the kernel hyperparameters.



	update(self)

	Update the stored matrices.











	
class heron.regression.SingleTaskGP(training_data, kernel, tikh=1e-06, solver=<class 'george.solvers.hodlr.HODLRSolver'>, hyperpriors=None, **kwargs)

	Bases: object

This is an implementaion of a Single task Gaussian process 
regressor. That is, a GPR which is capable of acting as a 
surrogate to a many-to-one function. The Single Task GPR is
the fundamental building block of the MultiTask GPR, which 
consists of multiple Single Tasks which are trained in tandem 
(but which do NOT share correlation information).
—
Ahem… There /are/ components of this code in here, but 
things need a little bit more thought before this will work
efficiently…
An implementation of a Gaussian Process Regressor with 
multiple response outputs and multiple inputs.


	Attributes

	
	km

	







Methods







	active_learn(self, afunction, x, y[, iters, …])

	Actively train the Gaussian process from a set of provided labels and targets using some acquisition function.



	add_data(self, target, label[, label_error])

	Add data to the Gaussian process.



	correlation(self)

	Calculate the correlation between the model and the test data.



	entropy(self)

	Return the entropy of the Gaussian Process distribution.



	expected_improvement(self, x)

	Returns the expected improvement at the design vector X in the model



	get_hyperparameters(self)

	Return the kernel hyperparameters.



	grad_neg_ln_likelihood(self, p)

	Return the negative of the gradient of the log likelihood for the GP when its hyperparameters have some specified value.



	hyperpriortransform(self, p)

	Return the true value in the desired hyperprior space, given an input of a unit-hypercube prior space.



	ln_likelihood(self, p)

	Provides a convenient wrapper to the ln likelihood function.



	loghyperpriors(self, p)

	Calculate the log of the hyperprior distributions at a given  point.



	neg_ln_likelihood(self, p)

	Returns the negative of the log-likelihood; designed for use with minimisation algorithms.



	nei(self, x)

	Calculate the negative of the expected improvement at a point x.



	prediction(self, new_datum[, normalised])

	Produce a prediction at a new point, or set of points.



	rmse(self)

	Calculate the root mean squared error of the whole model.



	save(self, filename)

	Save the Gaussian Process to a file which can be reloaded later.



	set_bmatrix(self, values)

	Set the values of the B matrix from a vector.



	set_hyperparameters(self, hypers)

	Set the hyperparameters of the kernel function.



	test_predict(self)

	Calculate the value of the GP at the test targets.



	train(self[, method, metric, sampler])

	Train the Gaussian process by finding the optimal  values for the kernel hyperparameters.



	update(self)

	Update the stored matrices.







	
active_learn(self, afunction, x, y, iters=1, afunc_args={})

	Actively train the Gaussian process from a set of provided
labels and targets using some acquisition function.


	afunctionfunction

	The acquisition function.



	xarray-like

	The input labels of the data. This can be a multi-dimensional array.



	yarray-like

	The input targets of the data. This can only be a single-dimensional 
array at present.



	itersint

	The number of times to iterate the learning process: equivalently, 
the number of training points to digest.



	afunc_argsdict

	A dictionary of arguments for the acquisition function. Optional.










	
add_data(self, target, label, label_error=None)

	Add data to the Gaussian process.






	
correlation(self)

	Calculate the correlation between the model and the test data.


	Returns

	
	corrfloat

	The correlation squared.














	
entropy(self)

	Return the entropy of the Gaussian Process distribution. This can
be calculated directly from the covariance matrix, making this
a nice, quick calculation to perform.


	Returns

	
	entropyfloat

	The differential entropy of the GP.














	
expected_improvement(self, x)

	Returns the expected improvement at the design vector X in the model


	Parameters

	
	xarray-like

	A real world coordinates design vector







	Returns

	
	EI: float

	The expected improvement value at the point x in the model














	
get_hyperparameters(self)

	Return the kernel hyperparameters.






	
grad_neg_ln_likelihood(self, p)

	Return the negative of the gradient of the log likelihood for the
GP when its hyperparameters have some specified value.


	Parameters

	
	gpheron Regressor object

	The gaussian process to be evaluated



	parray-like

	An array of the hyper-parameters at which the model is to be evaluated.







	Returns

	
	grad_ln_likelihoodfloat

	The gradient of log-likelihood for the Gaussian process














	
hyperpriortransform(self, p)

	Return the true value in the desired hyperprior space, given an
input of a unit-hypercube prior space.


	Parameters

	
	parray-like

	The point in the unit hypercube space







	Returns

	
	xThe position in the desired hyperparameter space of the point.

	












	
km = None

	




	
ln_likelihood(self, p)

	Provides a convenient wrapper to the ln likelihood function.

Notes

This is implemented in a separate function because of the mild 
peculiarities of how the pickle module needs to serialise 
functions, which means that instancemethods (which this would 
become) can’t be serialised.






	
loghyperpriors(self, p)

	Calculate the log of the hyperprior distributions at a given 
point.


	Parameters

	
	pndarray

	The location to be tested.














	
neg_ln_likelihood(self, p)

	Returns the negative of the log-likelihood; designed for use with
minimisation algorithms.


	Parameters

	
	gpheron Regressor object

	The gaussian process to be evaluated.



	parray-like

	An array of the hyper-parameters at which the model is to be evaluated.







	Returns

	
	neg_ln_likelihoodfloat

	The negative of the log-likelihood for the Gaussian process














	
nei(self, x)

	Calculate the negative of the expected improvement at a point x.






	
prediction(self, new_datum, normalised=False)

	Produce a prediction at a new point, or set of points.


	Parameters

	
	new_datumarray

	The coordinates of the new point(s) at which the GPR model should be evaluated.



	normalisedbool

	A flag to indicate if the input is already normalised 
(this might be the case if you’re trying to efficiently sample to parameter 
space). If False the input will be normalised to the same range as the 
training data.







	Returns

	
	prediction meanarray

	The mean values of the function drawn from the Gaussian Process.



	prediction variancearray

	The variance values for the function drawn from the GP.














	
rmse(self)

	Calculate the root mean squared error of the whole model.


	Returns

	
	rmsefloat

	The root mean squared error.














	
save(self, filename)

	Save the Gaussian Process to a file which can be reloaded later.


	Parameters

	
	filenamestr

	The location at which the Gaussian Process should be written.









Notes

In the current implementation the serialisation of the GP is performed
by the python pickle library, which isn’t guaranteed to be binary-compatible 
with all machines.






	
set_bmatrix(self, values)

	Set the values of the B matrix from a vector.






	
set_hyperparameters(self, hypers)

	Set the hyperparameters of the kernel function.






	
test_predict(self)

	Calculate the value of the GP at the test targets.






	
train(self, method='MCMC', metric='loglikelihood', sampler='ensemble', **kwargs)

	Train the Gaussian process by finding the optimal 
values for the kernel hyperparameters.


	Parameters

	
	methodstr {“MCMC”, “MAP”, “nested”}

	The method to be employed to calculate the hyperparameters.



	metricstr

	The metric which should be used to assess the model.



	hyperpriorslist

	The hyperprior distributions for the hyperparameters. Defaults to None, in which 
case the prior is uniform over all real numbers.














	
update(self)

	Update the stored matrices.










	
heron.regression.load(filename)

	Load a pickled heron Gaussian Process.








heron.sampling module

Code to simplify sampling the Gaussian process.


	
exception heron.sampling.UndefinedParameters

	Bases: Exception






	
exception heron.sampling.UnsupportedError

	Bases: Exception






	
heron.sampling.draw_samples(gp, **kwargs)

	Construct an array to pass to the Gaussian process to pull out a number of samples from a 
high dimensional GP.


	Parameters

	
	gpGPR object

	The Gaussian process object



	kwargsint, list, or tuple

	The ranges for each value.
In the format


parameter = 0.9




the axis will be constant 
Alternatively a list or tuple can be passed to form a range (which uses the same
arrangement of arguments as numpy’s linspace function:


parameter = (0.0, 1.5, 100)




will produce an axis 100 samples long.
















heron.training module

These are functions designed to be used for training a Gaussian
process made using heron.


	
heron.training.cross_validation(p, gp)

	Calculate the cross-validation factor between the training set and the test set.


	Parameters

	
	gpheron.Regressor

	The Gaussian process object.



	parray, optional

	The hyperparameters for the Gaussian process kernel. Defaults to None, which causes
the current values for the hyperparameters to be used.







	Returns

	
	cvfloat

	The cross validation of the test data and the model.














	
heron.training.ln_likelihood(p, gp)

	Returns to log-likelihood of the Gaussian process, 
which can be used to learn the hyperparameters of the GP.


	Parameters

	
	gpheron Regressor object

	The gaussian process to be evaluated



	parray-like

	An array of the hyper-parameters at which the model is to be evaluated.







	Returns

	
	ln_likelihoodfloat

	The log-likelihood for the Gaussian process









Notes


	TODO Add the ability to specify the priors on each hyperparameter.









	
heron.training.logp(x)

	




	
heron.training.prior_transform(x)

	




	
heron.training.run_nested(gp, metric='loglikelihood', **kwargs)

	




	
heron.training.run_sampler(sampler, initial, iterations)

	Run the MCMC sampler for some number of iterations, 
but output a progress bar so you can keep track of what’s going on






	
heron.training.run_training_map(gp, metric='loglikelihood', repeats=20, **kwargs)

	Find the maximum a posteriori training values for the Gaussian Process.


	Parameters

	
	gpheron.GaussianProcess,

	The Gaussian process object.



	metric{“loglikelihood”, “cv”}

	The metric to be used to train the MCMC. Defaults to log likelihood 
(loglikelihood), which is the more traditionally Bayesian manner, but 
cross-validation (cv) is also available.



	repeatsint, optional

	The number of times that the optimisation should be repeated in order 
to partially combat having the optimiser choose a local rather than the 
global maximum log_like.









Notes

The current implementation has no way of specifying the optimisation algorithm.


	TODO Add an option to change the optimisation algorithm.









	
heron.training.run_training_mcmc(gp, walkers=200, burn=500, samples=1000, metric='loglikelihood', samplertype='ensemble')

	Train a Gaussian process using an MCMC process to find the maximum evidence.


	Parameters

	
	gpheron.Regressor

	The Gaussian process object.



	walkersint

	The number of MCMC walkers.



	burnint

	The number of samples to be used to evaluate the burn-in for the MCMC.



	samplesint

	The number of samples to be used for the production sampling.



	metric{“loglikelihood”, “cv”}

	The metric to be used to train the MCMC. Defaults to log likelihood 
(loglikelihood), which is the more traditionally Bayesian manner, but 
cross-validation (cv) is also available.



	samplertypestr {“ensemble”, “pt”}

	The sampler to be used on the model.







	Returns

	
	probsarray

	The log probabilities.



	samplesarray

	The array of samples from the sampling chains.









Notes

At present the algorithm assigns the median of the samples to the 
value of the kernel vector; this may not ultimately be the best 
way to do this, and so it should be possible to specify the desired
value to be used from the distribution.


	TODO Add ability to change median to other statistics for training









	
heron.training.run_training_nested(gp, method='multi', maxiter=None, npoints=1000)

	Train the Gaussian Process model using nested sampling.


	Parameters

	
	gpheron.Regressor

	The Gaussian Process object.



	method{“single”, “multi”}

	The nested sampling method to be used.



	maxiterint

	The maximum number of iterations which should be carried out on
the marginal likelihood. Optional.



	npointsint

	The number of live-points to use in the optimisation.














	
heron.training.train_cv(gp)

	






Module contents


HERON: A Gaussian Process framework for Python
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