
Heron: Gaussian Process Surrogate
Modelling

Release 0.2.6.dev22+g9cb6bac

Daniel Williams

Sep 27, 2019

Basics

1 Heron 3
1.1 Features . 3

2 Installation 5
2.1 Stable release . 5
2.2 Source installation . 5

3 Usage 7

4 Tutorials 9
4.1 Introduction to Gaussian processes . 9
4.2 Covariance Functions . 12

5 Pre-supplied Models 17
5.1 George-based models . 17
5.2 Implementing new models . 18

6 Indices and tables 21

Index 23

i

ii

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

Heron is a Python package for producing surrogate models for computationally intensive functions, such as numerical
relativity waveforms.

This version of heron is implemented slightly differently to older versions, and should allow for a greater degree of
flexibility for using different GP libraries for the modelling, and to fit into analysis pipelines better than the earlier
development versions.

Warning: This documentation is still being written, and you may find a few places either where documenta-
tion is missing, or where the formatting isn’t good. If you spot something which has clearly been missed in the
documentation please open an issue on the git repository.

Basics 1

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

2 Basics

CHAPTER 1

Heron

The heron package is a python library for using Gaussian Process Regression (GPR) to emulate functions which are
expensive to

It was originally built for producing a surrogate model for numerical relativity waveforms from binary black hole
coalesences, but the code should be sufficiently general to allow other surrogate models to be built.

In order to handle very large models, heron can use the george python package to generate the underlying Gaussian
Process, which can handle very large models thanks to its use of a hierarchical matrix inverter.

1.1 Features

• Single-valued function surrogate production from multivalued inputs

• Handling very large datasets.

3

https://badge.fury.io/py/heron-model
https://travis-ci.org/transientlunatic/heron
https://zenodo.org/badge/latestdoi/51749075
https://heron-model.readthedocs.io/en/latest/?badge=latest
http://dan.iel.fm/george/

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

4 Chapter 1. Heron

CHAPTER 2

Installation

2.1 Stable release

To install the latest stable release of Heron you can use pip:

$ pip install heron

This should always install the latest stable release of heron, though it may still be sensible to run this command inside
a virtual environment.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 Source installation

Alternatively, if you want to make your own changes to the code, or test code between releases you can install from
source. The Heron source can be downloads from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/transientlunatic/heron

Or download the tarball:

$ curl -OL https://github.com/transientlunatic/heron/tarball/master

Once you have a copy of the source, you can install it with:

$ pip install .

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/transientlunatic/heron
https://github.com/transientlunatic/heron/tarball/master

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

6 Chapter 2. Installation

CHAPTER 3

Usage

In order to run one of Heron’s built-in models you’ll need to import that model as well as Heron itself, for example:

import heron
from heron.models.georgebased import HeronHodlr

import numpy as np

We also imported numpy for convenience.

This will load latest version of the NR-trained 7-dimensional Heron model. We now need to set the generator up to
produce waveforms. Currently we need to tell the model the total mass of the system, but this

generator = HeronHodlr()

Two different types of waveform can be requested from the model: the mean waveform (and its variance), or individual
waveform samples.

In order to produce a mean waveform we need to provide the model with the instrinsic properties of the system, that
is, the mass ratio, and the spin parameters. If any parameters are omitted from the dictionary they’re set to zero.

waveform = generator.mean(times=np.linspace(-0.02, 0.02), p={"mass ratio": 0.3})

The output of the mean method is two waveforms (one each for the plus and cross polarisations).

The data attribute of each waveform contains the mean strain data, while the variance attribute contains the
variance on this mean waveform.

Alternatively, Heron can return individual function draws. These may not look especially similar to what you would
expect out of a normal waveform model, but used collectively they can allow the calculation of various statistics.

samples = generator.distribution(samples=100, times=np.linspace(-0.02, 0.02), p={
→˓"mass ratio": 3})

This produces 100 waveform samples drawn from the model, at the same model configuration as the previous mean
waveform.

7

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

8 Chapter 3. Usage

CHAPTER 4

Tutorials

4.1 Introduction to Gaussian processes

Consider a regression problem with a set of data

𝐷 = (�⃗�𝑖, 𝑦𝑖), 𝑖 ∈ 1, . . . , 𝑛

𝑤ℎ𝑖𝑐ℎ𝑖𝑠𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑜𝑓 : 𝑚𝑎𝑡ℎ : ‘𝑛‘𝑝𝑎𝑖𝑟𝑠𝑜𝑓𝑖𝑛𝑝𝑢𝑡𝑠, : 𝑚𝑎𝑡ℎ : ‘�⃗�𝑖‘,

which are vectors which describe the location of the datum in parameter space, which are the inputs for the problem,
and 𝑦𝑖, the outputs. The outputs may be noisy; in this work I will only consider situations where the noise is additive
and Gaussian, so

𝑦𝑖(�⃗�𝑖) = 𝑓(�⃗�𝑖) + 𝜖𝑖, for 𝜖𝑖 ∼ 𝒩 (0, 𝜎2) (4.1)

where 𝜎 is the standard deviation of the noise, and 𝑓 is the (latent) generating function of the data.

This regression problem can be addressed using Gaussian processes:

A gls:gaussian-process is a collection of random variables, any finite number of which have a joint Gaussian distribu-
tion cite:gpr.book.rw.

Where it is more conventional to consider a prior over a set of, for example, real values, such as a normal distribution,
the Gaussian process forms a prior over the functions, 𝑓 from equation ref:eq:gp:additive-noise, which might form the
regression fit to any observed data. This assumes that the values of the function 𝑓 behave as

𝑝(𝑓 |�⃗�1, �⃗�2, . . . , �⃗�𝑛) = 𝒩 (0,𝐾) (4.2)

where 𝐾 is the covariance matrix of 𝑥1 and 𝑥2, which can be calculated with reference to some covariance function,
𝑘, such that 𝐾𝑖𝑗 = 𝑘(�⃗�𝑖, �⃗�𝑗). Note that I have assumed that the abbr:gp is a zero-mean process; this assumption is fre-
quent within the literature. While this prior is initially untrained it still contains information about our preconceptions
of the data through the form of the covariance function. For example, whether or not we expect the fit to be smooth,
or periodic. Covariance functions will be discussed in greater detail in section ref:sec:gp:covariance.

9

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

By providing training data we can use Bayes theorem to update the Gaussian process, in the same way that the posterior
distribution is updated by the addition of new data in a standard Bayesian context, and a posterior on the set of all
possible functions to fit the data is produced. Thus, for a vector of test values of the generating function 𝑓⋆, the joint
posterior 𝑝(𝑓, 𝑓*|�⃗�), given the observed outputs �⃗� can be found by updating the abbr:gp prior on the training and test
function values 𝑝(𝑓, 𝑓*) with the likelihood 𝑝(�⃗�|𝑓):

𝑝(𝑓, 𝑓*|�⃗�) =
𝑝(𝑓, 𝑓*)𝑝(�⃗�|𝑓)

𝑝(�⃗�)
. (4.3)

Finally the (latent) training-set function values, 𝑓 can be marginalised out:

𝑝(𝑓*|�⃗�) =

∫︁
𝑝(𝑓, 𝑓*|�⃗�)𝑓 =

1

𝑝(�⃗�)

∫︁
𝑝(�⃗�|𝑓)𝑝(𝑓, 𝑓*)𝑓 (4.4)

We can take the mean of this posterior in the place of the ‘‘best fit line” which other techniques produce, and then use
the variance to produce an estimate of the uncertainty of the prediction.

Both the prior 𝑝(𝑓, 𝑓*) and the likelihood 𝑝(�⃗�|𝑓) are Gaussian:

𝑝(𝑓, 𝑓*) = 𝒩 (⃗0,𝐾+), and 𝑝(�⃗�|𝑓) = 𝒩 (𝑓, 𝜎2𝐼) (4.5)

with

𝐾+ =

[︂
𝐾𝑓,𝑓 𝐾𝑓,𝑓*

𝐾𝑓*,𝑓
𝐾𝑓*,𝑓*

]︂
, (4.6)

and 𝐼 the identity matrix.

This leaves the form of the marginalised posterior being analytical:

𝑝(𝑓*|�⃗�) = 𝒩
(︁
𝐾𝑓*,𝑓

(𝐾𝑓,𝑓 + 𝜎2𝐼)−1�⃗�, 𝐾𝑓*,𝑓*
−𝐾𝑓,𝑓*

(𝐾𝑓,𝑓 + 𝜎2𝐼)−1𝐾𝑓,𝑓*
).(4.7)

Figures ref:fig:gp:training-data to ref:fig:gp:posterior-best show visually how a one-dimensional regressor can be cre-
ated using an abbr:gp method, starting from a abbr:gp prior and (noisy) data.

The mean and variance of this posterior distribution can be used to form a regressor for the data, 𝐷, with the mean
taking the role of a ‘‘line-of-best-fit” in conventional regression techniques, while the variance describes the goodness
of that fit.

A graphical model of a abbr:gp is shown in figure ref:fig:gp:chain-diagram which illustrates an important property of
the abpl:gp model: the addition (or removal) of any input point to the abbr:gp does not change the distribution of the
other variables. This property allows outputs to be generated at arbitrary locations throughout the parameter space.

Gaussian processes trained with 𝑁 training data require the ability to both store and invert an 𝑁 × 𝑁 matrix of
covariances between observations; this can be a considerable computational challenge.

Gaussian processes can be extended from the case of a single-dimensional input predicting a single-
dimensional output to the ability to predict a multi-dimensional output from a multi-dimensional input
cite:2011arXiv1106.6251A,Alvarez2011a,Bonilla2007.

10 Chapter 4. Tutorials

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

figures/gp/gp-training-data.pdf

Fig. 1: [Step 1] An example of raw training data (containing additive Gaussian noise) which is suitable for training a
Gaussian process. In this example the input data (𝑥-axis) are 1-dimensional, although GPs are also capable of handling
multi-dimensional data. Here the generating function is plotted as a grey line.

figures/gp/gp-example-prior-draws.pdf

Fig. 2: [Step 2] We choose a covariance function for the Gaussian process, in this case an exponential-quadratic
covariance function. The Gaussian process containing no data and this covariance matrix forms our prior probability
distribution. Here 50 draws from the prior distribution are plotted.

figures/gp/gp-example-posterior-draws.pdf

Fig. 3: [Step 3] The trained Gaussian process can be sampled multiple times to produce multiple different potential
fitting functions. Here 50 draws from the Gaussian process posterior are displayed.

figures/gp/gp-posterior-meancovar.pdf

Fig. 4: [Step 4] We can then take the mean and the covariance of the Gaussian process, and produce a single “best-fit”
with confidence intervals. Again, the original generating function for the data is shown as a grey line.

4.1. Introduction to Gaussian processes 11

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

figures/gp/covariance-se-overview.pdf

Fig. 5: The squared exponential covariance function (defined in equation ref:eq:gp:kernels:se). The panel on the left
depicts the value of the kernel as a function of 𝑟 = (|�⃗�− �⃗�′|), at a number of different length scales (𝑙 = 0.25, 0.5, 1.0)
while the panel on the right contains draws from Gaussian processes with se covariance with the same length scales as
the left panel.

4.2 Covariance Functions

The covariance function defines the similarity of a pair of data points, according to some relationship with suitable
properties. The similarity of input data is assumed to be related to the similarity of the output, and therefore the more
similar two inputs are the more likely their outputs are to be similar.

As such, the form of the covariance function represents prior knowledge about the data, and can encode understanding
of effects such as periodicity within the data.

A stationary covariance function is a function 𝑓(�⃗�− �⃗�′), and which is thus invariant to translations in the input space.

If a covariance function is a function of the form 𝑓(|�⃗�− �⃗�′|) then it is isotropic, and invariant under all rigid motions.

A covariance function which is both stationary and isotropic has the property that it can be expressed as a function of a
single variable, 𝑟 = |�⃗�− �⃗�′| is known as a abbr:rbf. Functions of the form 𝑘 : (�⃗�, �⃗�′) → C, for two vectors �⃗�, �⃗�′ ∈ 𝒳
are often known as kernels, and I will frequently refer interchangably to covariance functions and kernels where the
covariance function has this form.

For a set of points �⃗�𝑖|𝑖 = 1, . . . , 𝑛 a kernel, 𝑘 can be used to construct the gram matrix, 𝐾𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗). If the kernel
is also a covariance function then 𝐾 is known as a covariance matrix.

For a kernel to be a valid covariance function for a abbr:gp it must produce a positive semidefinite covariance matrix
𝐾. Such a matrix, 𝐾 ∈ R𝑛×𝑛 must satisfy �⃗�𝐾�⃗� ≥ 0 for all �⃗� ∈ R𝑛.

4.2.1 Example covariance functions

One of the most frequently encountered covariance functions in the literature is the abbr:se covariance functions
cite:gpr.book.rw. Perhaps as a result of its near-ubiquity this kernel is known under a number of similar, but con-
fusing names (which are often inaccurate). These include the exponential quadratic, quadratic exponential, squared
exponential, and even Gaussian covariance function.

The reason for this is its form, which closely resembles that of the Gaussian function:

𝑘SE(𝑟) = exp

(︂
− 𝑟2

2𝑙2

)︂
(4.8)

for 𝑟 the Euclidean distance of a datum from the centre of the parameter space, and 𝑙 is a scale factor associated with
the axis along which the data are defined.

The squared exponential function imposes strong smoothness constraints on the model, as it is infinitely differentiable.

The scale factor, 𝑙 in ref:eq:gp:kernels:se, also known as its scale-length defines the size of the effect within the
process. This characteristic length-scale can be understood cite:adler1976,gpr.book.rw in terms of the number of
times the abbr:gp should cross some given level (for example, zero). Indeed, for a abbr:gp with a covariance function

12 Chapter 4. Tutorials

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

figures/gp/covariance-ex-overview.pdf

Fig. 6: The exponential covariance function (defined in equation ref:eq:gp:kernels:exp). The panel on the left depicts
the value of the kernel as a function of 𝑟 = (|�⃗�− �⃗�′|), at a number of different length scales (𝑙 = 0.25, 0.5, 1.0) while
the panels on the right contain draws from Gaussian processes with exponential covariance with the same length scales
as the left panel.

𝑘 which has well-defined first and second derivatives the expected number of times, 𝑁𝑢 the process will cross a value
𝑢 is

E(𝑁) =
1

2𝜋

√︃
−𝑘′′(0)

𝑘(0)
exp

(︂
− 𝑢

2𝑘(0)

)︂
(4.9)

A zero-mean abbr:gp which has an abbr:se covariance structure will then cross zero 1/(2𝜋𝑙) times on average.

Examples of the squared exponential covariance function, and of draws from a Gaussian process prior which uses this
covariance function are plotted in figure ref:fig:gp:covariance:overviews:se for a variety of different scale lengths.

For data which is not generated by a smooth function a suitable covariance function may be the exponential covariance
function, 𝑘EX, which is defined

𝑘EX = exp
(︁
−𝑟

𝑙

)︁
, (4.10)

where 𝑟 is the pairwise distance between data and 𝑙 is a length scale, as in equation ref:eq:gp:kernels:se.

Examples of the exponential covariance function, and of draws from a Gaussian process prior which uses this covari-
ance function are plotted in figure ref:fig:gp:covariance:overviews:ex for a variety of different scale lengths.

For data generated by functions which are smooth, but not necessarily infinitely differentiable we may turn to the
Matérn family of covariance functions, which take the form

𝑘Mat(𝑟) =
1

2𝜈−1Γ𝜈

(︃√
2𝜈

𝑙

)︃𝜈

𝐾𝜈

(︃√
2𝜈

𝑙
𝑟

)︃
, (4.11)

for 𝐾𝜈 the modified Bessel function of the second kind, and Γ the gamma function. As with the previous two co-
variance functions 𝑙 is a scale length parameter, and 𝑟 the distance between two data. A abbr:gp which has a Matérn
covariance function will be (⌈𝑥⌉ − 1)-times differentiable.

While determining an appropriate value of 𝜈 during the training of the abbr:gp is possible, it is common to select a
value a priori for this quantity. 𝜈 = 3/2 and 𝜈 = 5/2 are common choices as 𝐾𝜈 can be determined simply, and the
covariance functions are analytic.

The case with 𝜈 = 3/2, commonly referred to as a Matérn-3/2 kernel then becomes

𝑘M32(𝑟) =

(︃
1 +

√
3𝑑

𝑙

)︃
exp

(︃
−
√

3𝑑

𝑙

)︃
. (4.12)

Examples of this covariance function, and example draws from a abbr:gp using it as a covariance function are plotted
in figure ref:fig:gp:kernels:m32.

4.2. Covariance Functions 13

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

figures/gp/covariance-mat32-overview.pdf

Fig. 7: The Matérn-3/2 covariance function (defined in equation ref:eq:gp:kernels:mat, with 𝜈 = 3/2). The panel
on the left depicts the value of the kernel as a function of 𝑟 = (|�⃗� − �⃗�′|), at a number of different length scales
(𝑙 = 0.25, 0.5, 1.0) while the panels on the right contain draws from Gaussian processes using a Matérn-3/2 covariance
with the same length scales as the left panel.

figures/gp/covariance-mat52-overview.pdf

Fig. 8: The Matérn-5/2 covariance function (defined in equation ref:eq:gp:kernels:mat, with 𝜈 = 5/2). The panel
on the left depicts the value of the kernel as a function of 𝑟 = (|�⃗� − �⃗�′|), at a number of different length scales
(𝑙 = 0.25, 0.5, 1.0) while the panels on the right contain draws from Gaussian processes using Matérn-5/2 covariance
functions with the same length scales as the left panel.

Similarly, the Matérn-5/2 is the case where 𝜈 = 5/2, taking the form

𝑘M52(𝑟) =

(︃
1 +

√
5𝑑

𝑙
+

5𝑑2

3𝑙2

)︃
exp

(︃
−
√

5𝑑

𝑙

)︃
. (4.13)

Again, examples of this covariance function, and example draws from a abbr:gp using it as a covariance function are
plotted in figure ref:fig:gp:kernels:m52.

Data may also be generated from functions with variation on multiple scales. One approach to modelling such data is
to use a abbr:gp with rational quadratic covariance. This covariance function represents a scale mixture of abbr:rbf
covariance functions, each with a different characteristic length scale. The rational quadratic covariance function is
defined as

𝑘RQ(𝑟) =

(︃
1 +

𝑟2

2𝛼𝑙2

−𝛼
)︃
, (4.14)

where 𝛼 is a parameter which controls the weighting of small-scale compared to large-scale variations, and 𝑙 and 𝑟 are
the overall length scale of the covariance and the distance between two data respectively. Examples of this function,
at a variety of different length scales and 𝛼 values, and draws from abpl:gp which use these functions are plotted in
figure ref:fig:gp:kernels:rq.

This summary of potential covariance functions for use with a abbr:gp is far from complete (see cite:gpr.book.rw for
a more detailed list). However, these four can be used or combined to produce highly flexible regression models, as
they can be added and multiplied as normal functions.

14 Chapter 4. Tutorials

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

figures/gp/covariance-rq-overview.pdf

Fig. 9: The rational quadratic covariance function (defined in equation 4.14). The panel on the left depicts the value
of the kernel as a function of 𝑟 = (|�⃗�− �⃗�′|), at a number of different length scales (𝑙 = 0.25, 0.5, 1.0) while the panel
on the right contains draws from Gaussian processes with rational quadratic covariance with the same length scales as
the left panel.

4.2. Covariance Functions 15

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

16 Chapter 4. Tutorials

CHAPTER 5

Pre-supplied Models

This package contains a number of different pre-baked waveform models, and the data which is required to reproduce
them. It’s also fairly easy to use the existing framework to implement a new model, using the same training data as
pre-supplied models, or using new training data.

5.1 George-based models

A number of models implemented in Heron make use of the George Gaussian process library which implements a
number of simplifications to make the inversion of the covariance matrix required for GPR predictions more tractable.

The main model produced this way is HeronHODLR, which implements a fully-spinning BBH waveform model which
is trained on waveform data from the Georgia Tech waveform catalogue.

All of the george-based models are contained in the heron.models.georgebased module.

5.1.1 HeronHODLR: A spinning, NR-trained waveform model

Ther HeronHODLR model implements a surrogate model for gravitational waveforms form binary black hole events
with arbitrary spin parameters between a mass ratio of 1 and 8.

class heron.models.georgebased.HeronHodlr
Produce a BBH waveform generator using the Hodlr method.

Methods

bilby(self, time, mass_1, mass_2, . . .) Return a waveform from the GPR in a format ex-
pected by the Bilby ecosystem

build(self[, mean, white_noise, tol]) Construct the GP object
distribution(self, p, times[, samples, . . .]) Return the mean waveform and the variance at a

given location in the BBH parameter space.
Continued on next page

17

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

Table 1 – continued from previous page
eval(self) Prepare the model to be evaluated.
log_evidence(self, k, n) Evaluate the log-evidence of the model at a hyperpa-

rameter location k.
mean(self, p, times) Return the mean waveform at a given location in the

BBH parameter space.
train(self) Prepare the model to be trained.

5.1.2 Heron2DHodlrIMR

This model is a 2D prototype waveform model trained on phenomenological sample waveforms. In contrast to the full
HeronHODLR model, this model models only non-spinning waveforms between mass ratios of 1 and 10.

class heron.models.georgebased.Heron2dHodlrIMR
Produce a BBH waveform generator using the Hodlr method with IMRPhenomPv2 training data.

Methods

bilby(self, time, mass_1, mass_2, . . .) Return a waveform from the GPR in a format ex-
pected by the Bilby ecosystem

build(self[, mean, white_noise, tol]) Construct the GP object
distribution(self, p, times[, samples, . . .]) Return the mean waveform and the variance at a

given location in the BBH parameter space.
eval(self) Prepare the model to be evaluated.
log_evidence(self, k, n) Evaluate the log-evidence of the model at a hyperpa-

rameter location k.
mean(self, p, times) Return the mean waveform at a given location in the

BBH parameter space.
train(self) Prepare the model to be trained.

5.2 Implementing new models

All models implemented in the heron package are built on top of the Model class, which provides a number of useful
methods to assist in creating a Gaussian process model.

class heron.models.Model
This is the factory class for statistical models used for waveform generation.

A model class must expose the followi*** TODO Email about Away Dayc_ind = {j:i for i,j in
columns.items()}c_ind = {j:i for i,j in columns.items()}ng methods: - distribution : produce a distribution
of waveforms at a given point in the parameter space - mean : produce a mean waveform at a given point in the
parameter space - train : provide an interface for training the model

All of the methods which are provided by this class are intended to be treated as private methods, which other classes
build upon, and which aren’t intended to be accessed directly.

To build a new model we can begin by inheriting the Model class.

class NewModel(Model):
pass

This will give your new model access to the various methods which are needed to produce waveform outputs from a
model.

18 Chapter 5. Pre-supplied Models

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

As a minimum your new model must contain three methods so that heron can interact with it properly.

5.2.1 distribution()

This method should return the parameters of the waveform distribution at a given location in parameter space, i.e. a
vector representing the mean and variance at each requested location. The function should have the following signature

distribution(self, p, times, *args, **kwargs)

With p being a dictionary of coordinates in the parameter space, and times being a list or array of times at which the
waveform distribution should be produced.

5.2.2 mean()

This method should return only the mean waveform at a given location in the parameter space. It should have the
signature

mean(p, times, *args, **kwargs)

Where p is a dictionary of coordinates in the parameter space, and times is a list or array of times at which the
waveform distribution should be produed.

5.2.3 train()

This method defines the correct way to “train” the model, in order to determine the optimal values of the hyperpa-
rameters for the model (using an empirical Bayesian approach). This method should, at the minimum, set self.
training to True for the model, and self.evaluate to False, in order to mark the model as being in a
training state, and not suitable for evaluation.

If this method conducts the entire training process you may then switch these flags to set self.evaluate to True
and self.training to False before the method completes its execution. Alternatively you should define an
eval() method to do this, and any other cleaning-up which should be done after training. If heron encounters a
model in training state when attempting to evaluate it, it will first attempt to run the eval() method on the model.

In addition to the Model class, a number of additional helper classes exist within heron, mainly to help with the
construction of gravitational wave models.

5.2.4 Gravitational wave-specific classes

The heron.models.gw.BBHSurrogate should be inherited in a class if it is designed to emulate binary black
hole waveforms. This class provides metadata related to the intrinsic parameters of these systems. For simpler models
which don’t include spin effects you should use the heron.models.gw.BBHNonSpinSurrogate class instead.

For time-domain strain models you should have your model class inherit the heron.models.gw.
HofTSurrogate class. This provides interfaces to the waveform model which are particular to a time-domain
model.

5.2. Implementing new models 19

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

20 Chapter 5. Pre-supplied Models

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

21

Heron: Gaussian Process Surrogate Modelling, Release 0.2.6.dev22+g9cb6bac

22 Chapter 6. Indices and tables

Index

H
Heron2dHodlrIMR (class in

heron.models.georgebased), 18
HeronHodlr (class in heron.models.georgebased), 17

M
Model (class in heron.models), 18

23

	Heron
	Features

	Installation
	Stable release
	Source installation

	Usage
	Tutorials
	Introduction to Gaussian processes
	Covariance Functions

	Pre-supplied Models
	George-based models
	Implementing new models

	Indices and tables
	Index

